We have to find the derivative of y = arc sin x/(1-x^2).
We use the quotient rule here:
y' = [(arc sin x)'*(1 - x^2) - ( arc sin x)*(1 - x^2)']/(1 - x^2)^2
=> [sqrt(1-x^2)*(1 - x^2) + 2x*(arc sin x)]/(1 - x^2)^2
The required derivative dy/dx = [sqrt(1-x^2)*(1 - x^2) + 2x*(arc sin x)]/(1 - x^2)^2
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now