Determine the quadratic ax^2+bx+c, if a,b,c are terms of arithmetic sequence. a=2t-3,b=5t+1,c=4t-7

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We are given that in the quadratic equation ax^2+bx+c, a,b,c are terms of arithmetic sequence such that a = 2t-3, b = 5t+1 and c = 4t-7

As consecutive terms of an AP have a common difference:

4t - 7 - 5t - 1 = 5t + 1 - 2t + 3

=> -t - 8 = 3t + 4

=> 4t = -12

=> t  = -3

a = 2t - 3 = -6 - 3 = -9

b = 5t + 1 = -15 + 1 = -14

c = 4t - 7 = -12 - 7 = -19

The quadratic equation is -9x^2 - 14x - 19 = 0

=> 9x^2 + 14x + 19 =  0

The required quadratic equation is 9x^2 + 14x + 19 =  0

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team