Determine if its a growth or decay.Then find the percent increase of decrease. 1.y=16(.25)^x 2.y=0.8(1.28)^x 3.y=17(1/5)^x''.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

y= 16(0.25)^x

The exponential equation represents an exponential decay because the rate of decay is 0.25 which is less than 1.

The general form equation is:

y(x)= a(1-r)^x such that r is the decay percent.

Comparing two equation we have 1-r = 0.25

==> r= 1-0.25 = 0.75 = 75%

Then, the decay percent is 75%.

 

2. y= 0.8(1.8)^x

The equation represents exponential growth because the growth factor is greater than 1.

==> 1+r = 1.8

==> r= 0.8 = 80%

Then, the growth percent is 80%

 

3. y= 17(1/5)^x

The equation represents exponential decay because 1/5 is less than 1.

==> 1-r = 1/5

==> r= 1- 1/5 = 4/5 = 0.8= 80%

Then, the decay percent is 80%

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team