Determine the intervals where the function is increasing or decreasing and the type of critical points found on the interval `[0,2pi]` for the function: `f(x)=1/2 sin^2x+cosx`

The critical points will be found where the first derivative is zero.

`f'(x)=sinxcosx-sinx`

`f'(x)=0 ==> sinx(cosx-1)=0` Then:

`sinx=0 ==> x=0,pi,2pi`

`cosx=1==>x=0,2pi`

**For `0<x<pi,f'(x)<0` so the function is decreasing on this interval.**

**For `pi<x<2pi,f'(x)>0` so the function is increasing on this interval.**

**The function has a maximum at `x=0,x=2pi` and a minimum at `x=pi` **

The graph:

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now