Determine the gradient vector of the function f(x,y)=x^3*y^2-2x at the point (2,4)?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The gradient vector is a vector whose first component is the derivative of f(x, y) with respect to x and the second is the derivative of f(x, y) with respect to y.

Here f(x, y) = x^3*y^2 - 2x

derivative with respect to x is 3x^2*y^2 - 2

derivative with respect to y is 2y*x^3

At the point (2, 4)

3x^2*y^2 - 2 = 3*2^2*4^2 - 2 = 190

2y*x^3 = 64

The required vector is  < 190 , 64>

Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial