Determine the dimensions of 320ml cans which have a minimum surface area (full question contained) To avoid increasing the cost of 375ml cans of soft drink, the manufacturers have decided to reduce the volume of new cans to 320ml. Also, they have decided to keep to a minimum the surface area of the can to maximise profits. Determine the dimensions of these new 320ml cans which have a minimum surface area. Even if you just explain how to do it, it would be a MASSIVE help. Thank you!!!
- print Print
- list Cite
Expert Answers
calendarEducator since 2012
write511 answers
starTop subjects are Math, Science, and Business
Assume that a can is a perfect cylinder
The surface area of a cylinder with radius `r` and height `h` is given by
`S(r,h) = 2(pir^2) + h(2pir)`
this is twice times the area of the circle at the bottom of the can (to give surface area of the top and the bottom) and the circumference of the can times the height (the sides are made up of a stack of `h` circles with radius `r` and height one unit).
The volume of the cylinder is given by
`V = h(pir^2)`
which is the area of a stack of `h` circles with radius `r` and height one unit.
We know the volume of the new cans - 320ml, so we have
`V = 320`
`implies` `h(pir^2) = 320`
Now we want to minimize the surface area with respect to `r` and `h`.
Use the method of Lagrange multipliers, ie simultaneously solve
1) ` (dS)/(dr) + lambda(dV)/(dr) = 0`
2) ` (dS)/(dh) + lambda(dV)/(dh) = 0`
subject to the constraint
`h(pir^2) = 320`
We have
1) `4pir + 2pih + 2pirhlambda = 0`
2) `2pir + pir^2lambda = 0`
Now 2) `implies` `r = -2/lambda`
Plugging this into 1) gives `h = -4/lambda`
So we need to satisfy the constraint
`-4/lambda(4pi/lambda^2) = 320`
`implies` `lambda^3 = -(16pi)/320 = -pi/20` `implies` `lambda = -root(3)((pi/20))` (ml)^(1/3) = (cm^3)^(1/3) = cm
(a millilitre is a cubic centimetre)
`implies` ` `` r=2root(3)((20/pi)) = 3.71` cm answer
`implies` `h = 4root(3)(20/pi) = 7.41` cm
Related Questions
- What happens if you double all the dimensions of a triangular prism? Will you also double the...
- 1 Educator Answer
- You have 196 feet of fencing to enclose a rectangular region. Find the Dimensions of the...
- 1 Educator Answer
- How do you solve a surface area problem?How do you find the surface area of a triangular prism...
- 4 Educator Answers
- Maximum Area: a rancher has 200 feet of fencing to enclose two adjacent rectangular corrals. what...
- 3 Educator Answers
- find the dimensions of the largest area rectangle whose perimeter is 3600 feet. (enter the...
- 1 Educator Answer