f= 2x/(x+1)(x^2 +1)

F = aln (1+x) + b ln(1+x^2) +c*arctanx

F' = a/(1+x) +2bx/(1+x^2) + c/(1+x^2)

= [a(1+x^2) + 2bx(1+x) + c(1+x)]/(1+x^2)(1+x)

= ( a + ax^2 + 2bx + 2bx^2 + c + x )/(1+x^2)(1+x)

= [(a+2b)x^2 + (2b+1)x + (a+c)]/(1+x^2)(1+x)

But F' = f

...

## See

This Answer NowStart your **subscription** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

f= 2x/(x+1)(x^2 +1)

F = aln (1+x) + b ln(1+x^2) +c*arctanx

F' = a/(1+x) +2bx/(1+x^2) + c/(1+x^2)

= [a(1+x^2) + 2bx(1+x) + c(1+x)]/(1+x^2)(1+x)

= ( a + ax^2 + 2bx + 2bx^2 + c + x )/(1+x^2)(1+x)

= [(a+2b)x^2 + (2b+1)x + (a+c)]/(1+x^2)(1+x)

But F' = f

==> (a+2b)x^2 + (2b+1)x + (a+c) = 2x

==> a+2b = 0......(1)

==> 2b+1 = 2

==> **b = 1/2**

==> a = -2b = -2*1/2 = -1

==> **a = -1**

==> a+c = 0.........(3)

==> **c = 1**