Determine all solutions to z^5 = root(3) + iAnswer in polar form.

Asked on by clasohlson

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

Put sqrt3+i=t => z^5=t => z=(t)^(1/5)

Use polar form for t:

t = r(cos theta+i sin theta)

r=sqrt((sqrt3)^2+1^2) => r=sqrt4 => r=2

Use the formula to express theta: tan theta=coefficient of i/number alone= imaginary part of complex number/real part of complex number

tan theta=1/sqrt3 => theta=30 degrees or pi/6 radians



Use De Moivre's theorem:



Answer: put n=0=>z=(2)^(1/5)*(cos(pi/30)+isin(pi/30))

put n=1=>z=(2)^(1/5)*(cos(13pi/30)+isin(13pi/30))

put n=2=>z=(2)^(1/5)*(cos(25pi/30)+isin(25pi/30))

put n=3=>z=(2)^(1/5)*(cos(37pi/30)+isin(37pi/30))

put n=4=>z=(2)^(1/5)*(cos(49pi/30)+isin(49pi/30))

We’ve answered 319,844 questions. We can answer yours, too.

Ask a question