Calculate determinant by expansion and problem of substitution [(1,cosa,cos2a)][(1,cosb,cos2b)][(1,cosc,cos2c)]

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

The determinant has three rows and columns and it could be evaluated using Sarrus' rule.

To make the evaluation easier you should use the properties of determinants.

`[[1,cos a , cos 2a],[1,cosb , cos 2b],[1,cosc , cos 2c]]` 

Replacing each element of the third column by the formula`cos 2 alpha = 2cos^2 alpha -1 ` yields:

`[[1,cos a ,2cos^2 a - 1],[1,cosb , 2cos^2b - 1],[1,cosc , 2cos^2c - 1]]`

Adding the first column to the third column yields:

`[[1,cos a ,2cos^2 a],[1,cosb , 2cos^2b],[1,cosc , 2cos^2c]]`

Notice the common factor 2:

`[[1,cos a ,2cos^2 a],[1,cosb , 2cos^2b],[1,cosc , 2cos^2c]] = 2*[[1,cos a ,cos^2 a],[1,cosb , cos^2b],[1,cosc , cos^2c]]`

The new determinant is a Vandermonde determinant.

`[[1,cos a ,cos^2 a],[1,cosb , cos^2b],[1,cosc , cos^2c]] = (cos b - cos a)(cos c - cos a)(cos c - cos b)`

Evaluating the determinant yields `Delta = 2(cos b - cos a)(cos c - cos a)(cos c - cos b).`

We’ve answered 318,983 questions. We can answer yours, too.

Ask a question