Derive an expression for marginal cost given  that total cost of a firm is  C(q) = 60q - 12q^2 + q^3    

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to remember that the marginal cost expresses the increase or decrease of total cost if one item more is produced.

Since the first derivative depicts the monotony of function, thus you need to differentiate the total cost function with respect to q to find the marginal cost expression such that:

`C'(q) = (60q - 12q^2 + q^3 )'`

`C'(q) = 60 - 12*2*q^(2-1) + 3*q^(3-1)`

`C'(q) = 60 - 24*q + 3*q^2`

Hence, evaluating expression of marginal cost yields `MC = C'(q) = 60 - 24*q + 3*q^2.`

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

For cost as a function of the number of products manufactured C(q), the marginal cost is the derivative of C(q) with respect to q or C'(q)

Here, C(q) = 60q - 12q^2 + q^3

C'(q) = 60 - 24q + 3q^2

The marginal cost is C'(q) = 60 - 24q + 3q^2

 

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial