You need to use Vieta's formulas to evaluate the summation and the product of the solutions to quadratic equation `x^2-2mx+m^2-1=0` , such that:

`ab = (m^2-1)/1 => ab = m^2-1`

`a + b = -(-2m)/1 => a + b = 2m`

Replacing `m^2-1` for `ab` and `2m` for `a + b` in the inequality, yields:

`m^2 - 1 - 2m + 2 >= 0`

`m^2 - 2m + 1 >= 0`

You need to notice that the quadratic `m^2 - 2m + 1` expression represents expansion of the square `(m - 1)^2,` such that:

`(m - 1)^2 >= 0`

Since a square is positive for all m and for `m = 1` , `m - 1 = 0` , yields that the inequality holds.

**Hence, testing if the inequality `m^2 - 2m + 1 >= 0` holds, under the given conditions, yields that the statement `m^2 - 2m + 1 >= 0` is valid.**

**Further Reading**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now