We have to find the value of the definite integral of x^2/sqrt (x^3 + 1) between the limits x = 2 and x = 3.

First we determine the indefinite integral and then substitute the values x = 3 and x = 2.

Int [ x^2 / sqrt (x^3 + 1) dx ]

let y = x^3 + 1

dy/3 = x^2*dx

=> Int[(1/3)*y^(-0.5) dy]

=> (2/3)*sqrt y + C

substitute y = x^3 + 1

=> (2/3)*sqrt (x^3 + 1) + C

Between the limits x = 2 and x = 3

(2/3)*sqrt (3^3 + 1) + C - (2/3)*sqrt (2^3 + 1) - C

=> (2/3)(sqrt 28 - sqrt 9)

=> (2/3)(2*sqrt 7 - 3)

**The required value of the definite integral is (2/3)(2*sqrt 7 - 3)**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now