# A cubic curve has x intercepts -3, 0 and -2. What is a possible equation for this curve?

sciencesolve | Certified Educator

calendarEducator since 2011

starTop subjects are Math, Science, and Business

You should remember that you may find the solutions to the equation if you know the x intercepts, hence, since the problem provides three x intercepts, thus, the cubic equation has three real solutions `x_1=-3, x_2=-2, x_3=0` .

You should remember that you may write the factored form of the equation if you know the solutions to the equation such that:

`f(x)=a(x-x_1)(x-x_2)(x-x_3)`

`f(x) = a(x-(-3))(x-(-2))(x-0)`

`f(x) = a(x+3)(x+2)x`

`x^3 + 5x^2 + 6x`

You may find the leading coefficient a using Vieta's relations for the equation `ax^3 + bx^2 + cx + d = 0` , such that:

`x_1+x_2+x_3 = -b/a `

`-3-2+0=-b/a => b/a=5 => a` =1

`x_1*x_2+x_1*x_3+x_2*x_3 = c/a`

`(-3)(-2) + (-3)*0 + (-2)*0 = c/a => c/a = 6 => a=1`

`x_1*x_2*x_3 = -d/a => d/a = 0 => d=0`

`x^3 + (-b/a)x^2 + (c/a)x - d/a = 0`

`x^3 + 5x^2 + 6x = 0`

Hence, evaluating the cubic equation under the given conditions yields `x^3 + 5x^2 + 6x = 0` .

check Approved by eNotes Editorial
tiburtius | Certified Educator

calendarEducator since 2012

starTop subjects are Math, Science, and History

If I have understood correctly cubic curve passes through x axis on points -3, 0 and -2. In that case the only possible equation is

`y = x(x+3)(x+2)` because `y=0` for `x = 0,-3,-2.` There is no other cubic curve that would satisfy those three conditions.

If you have `n` nul-points `x_0, ldots, x_(n-1)` then you can determine formula of any `n`-th degree polynomial in that way.

`P(x) = (x-x_0) cdots (x-x_(n-1))`

check Approved by eNotes Editorial
degeneratecircle | Certified Educator

calendarEducator since 2012

starTop subject is Math

There are infinitely many cubics that have those zeros, which is why your question reads "a possible equation" instead of "the equation".

`f(x)=ax(x+3)(x+2)`

is a solution for any nonzero constant .

check Approved by eNotes Editorial