`coth^2(x) - csc h^2(x) = 1` Verify the identity.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`coth^2(x) - csc h^2(x) =1`

Take note that hyperbolic cotangent and hyperbolic cosecant are defined as

  • `coth (x) = (e^x+e^(-x))/(e^x-e^(-x))`
  • `csc h^2(x) =2/(e^x - e^(-x))`

Plugging them, the left side of the equation becomes

`((e^x+e^(-x))/(e^x-e^(-x)))^2 -(2/(e^x - e^(-x)) )^2=1`

`(e^x+e^(-x))^2/(e^x-e^(-x))^2 -2^2/(e^x - e^(-x))^2=1`

`(e^x+e^(-x))^2/(e^x-e^(-x))^2 -4/(e^x - e^(-x))^2=1`

`((e^x+e^(-x))^2-4)/(e^x - e^(-x))^2=1`

Then, simplify the numerator.

`((e^x + e^(-x))(e^x + e^(-x)) - 4)/(e^x- e^(-x))^2=1`

`(e^(2x)+1+1+e^(-2x) - 4)/(e^x- e^(-x))^2=1`

`(e^(2x)+2+e^(-2x) - 4)/(e^x- e^(-x))^2=1`

`(e^(2x) - 2 +e^(-2x)) /(e^x- e^(-x))^2=1`

Factoring the numerator, it becomes

`((e^x - e^(-x))(e^x-e^(-x)))/(e^x- e^(-x))^2=1`

`(e^x - e^(-x))^2/(e^x- e^(-x))^2=1`

Cancelling common factor, the right side simplifies to

`1=1`

This verifies that the given equation is an identity.

 

Therefore,  `coth^2(x) - csc h^2(x)=1`  is an identity.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team