cosx = 0.25 = 1/4
We know that:
sin^2 x + cos^2 x = 1
==> sinx = sqrt(1-cos^2 x)
= sqrt(1- 1/16)
= sqrt(15/16) = sqrt15/4
==> sinx = sqrt15/4
==> tanx = sinx/cosx = (sqrt15/4)/(1/4) = sqrt15
==> tanx = sqrt14
cosx = 0.25 = 1/4
We know that:
sin^2 x + cos^2 x = 1
==> sinx = sqrt(1-cos^2 x)
= sqrt(1- 1/16)
= sqrt(15/16) = sqrt15/4
==> sinx = sqrt15/4
==> tanx = sinx/cosx = (sqrt15/4)/(1/4) = sqrt15
==> tanx = sqrt14