`cos(x + pi/4) - cos(x - pi/4) = 1` Find all solutions of the equation in the interval [0, 2pi).
- print Print
- list Cite
Expert Answers
gsarora17
| Certified Educator
calendarEducator since 2015
write762 answers
starTop subjects are Math, Science, and Business
`cos(x+pi/4)-cos(x-pi/4)=1 , 0<=x<=2pi`
We will use the following identity,
`cos(A+B)=cosAcosB-sinAsinB`
`cos(x+pi/4)-cos(x-pi/4)=1`
`rArr (cos(pi/4)cos(x)-sin(pi/4)sin(x))-(cos(pi/4)cos(x)+sin(pi/4)sin(x))=1`
`rArr(cos(x)-sin(x))/sqrt(2)-(cos(x)+sin(x))/sqrt(2)=1`
`rArr(cos(x)-sin(x)-cos(x)-sin(x))/sqrt(2)=1`
`rArr(-2sin(x))/sqrt(2)=1`
`rArrsin(x)=-1/sqrt(2)`
General solutions are ,
`x=(5pi)/4+2pin , x=(7pi)/4+2pin`
solutions for the range `0<=x<=2pi` are,
`x=(5pi)/4 , x=(7pi)/4`
Related Questions
- 2cosx + 1 = 0 find x values for the interval [0, 2pi]
- 4 Educator Answers
- Find all solutions of the equation sin 2x = cos 2x, if x is in the interval [0,pi].
- 1 Educator Answer
- `sin(2x)sin(x) = cos(x)` Find the exact solutions of the equation in the interval [0, 2pi).
- 1 Educator Answer
- `cos(2x) - cos(x) = 0` Find the exact solutions of the equation in the interval [0, 2pi).
- 1 Educator Answer
- `(sin(2x) + cos(2x))^2 = 1` Find the exact solutions of the equation in the interval [0, 2pi).
- 1 Educator Answer