consider the relation division a|b. prove that a|b is transitive then if `a,b>0` and `a|b` then `a<=b` .

Expert Answers
tiburtius eNotes educator| Certified Educator

By definition  `a|b`  if and only if `b=an,` `n in ZZ`.

A relation `circ` is transitive if `(a circ b ^^b circ c)=>(a circ c)`. So we need to prove that if `a|b` and `b|c` then `a|c`.

If `a|b` then `b=an`

If `b|c`  then `c= bm=anm`

Since `m` and `n` are integers then `mn` is also integer which means that `a|b.`


Let `a,b>0` and `a|b`.

Since `a|b` it follows that `b=an` for some integer `n` and since `b` is positive `an` must be positive and since `a` is positive `n` must be positive as well. So `n >=1`. If `n=1` then `a=b`.

If `n>1` then `a=b/n` and since both `b` and `n` are positive `b/n<b`.

Hence `a<=b`

pramodpandey | Student

Let  a divides b  i.e. `b/a ,b>=a ,b= ma ,`

and m is an integer.

Let  b divides  c i.e `c/b ,c>=b ,c=nb ,` 

and n is an integer.

c=n(ma)=(nm)a  ,mn is an integer , this mean  a is multiple of c

i.e. a divides c  i.e a/c

this proves transitivity.