By definition `a|b` if and only if `b=an,` `n in ZZ`.
A relation `circ` is transitive if `(a circ b ^^b circ c)=>(a circ c)`. So we need to prove that if `a|b` and `b|c` then `a|c`.
If `a|b` then `b=an`
If `b|c` then `c= bm=anm`
Since `m` and `n` are integers then `mn` is also integer which means that `a|b.`
Let `a,b>0` and `a|b`.
Since `a|b` it follows that `b=an` for some integer `n` and since `b` is positive `an` must be positive and since `a` is positive `n` must be positive as well. So `n >=1`. If `n=1` then `a=b`.
If `n>1` then `a=b/n` and since both `b` and `n` are positive `b/n<b`.
Hence `a<=b`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.