consider the relation division a|b. prove that a|b is transitive then if `a,b>0` and `a|b` then `a<=b` .

Expert Answers

An illustration of the letter 'A' in a speech bubbles

By definition  `a|b`  if and only if `b=an,` `n in ZZ`.

A relation `circ` is transitive if `(a circ b ^^b circ c)=>(a circ c)`. So we need to prove that if `a|b` and `b|c` then `a|c`.

If `a|b` then `b=an`

If `b|c`  then `c= bm=anm`

Since `m` and `n` are integers then `mn` is also integer which means that `a|b.`

 

Let `a,b>0` and `a|b`.

Since `a|b` it follows that `b=an` for some integer `n` and since `b` is positive `an` must be positive and since `a` is positive `n` must be positive as well. So `n >=1`. If `n=1` then `a=b`.

If `n>1` then `a=b/n` and since both `b` and `n` are positive `b/n<b`.

Hence `a<=b`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team