The company manufactures and sells x transistor radios per week. The cost of producing x radios is given by C(x)=5000+2x and the price demand equation is P = 10 - .001x where x can be no more than 10000 units.
An additional tax of $2 for each radio is introduced by the government, this changes the cost function to C(x) = 5000 + 2x + 2x = 5000 + 4x
If the profit made by the company is maximized when x radios are manufactured, the total cost incurred is 5000 + 4x and the revenue is x*(10 - .001*x). The profit made is P(x) = 10x - 0.001x^2 - 5000 - 4x
= -0.001x^2 + 6x - 5000
Solve P'(x) = 0 for x
-2*0.001x + 6 = 0
=> x = 3000
The maximum profit is $4000. The radios should be priced at $7
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.