colinear problem points A(8,0),B(3,6),C(0,3) BC intersect 0x in D AB intersect 0y in E prove the midpoints of OB,AC,DE are colinear

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find the equation of line `BC`  such that:

`y - y_C = (y_B - y_C)/(x_B - x_C)(x - x_C)`

`y - 3 = (6 - 3)/(3 - 0)(x - 0) => y - 3 = x => y = x + 3`

Since the problem provides the information that the line `BC`  crosses x axis in the point D, you may find the coordinates of the point D such that:

`0 = x + 3 => x = -3`

Hence, the line `BC`  intersect x axis at `D(-3,0).`

You need to find the equation of line `AB ` such that:

`y - y_B = (y_A - y_B)/(x_A - x_B)(x - x_B)`

`y -6 = (0 - 6)/(8 - 3)(x - 3) => y - 6 = -6/5(x - 3)`

Since the problem provides the information that the line `AB`  crosses y axis in the point E, you may find the coordinates of the point E such that:

`y - 6 = (-6/5)(0 - 3) => y = 6 + 18/5 => y = 48/5`

Hence, the line `AB`  intersect y axis at `E(0,48/5).`

You need to find the midpoint `OB`  such that:

`x_1 =(x_O + x_B)/2 => x_1 = (0 + 3)/2 = 3/2`

`y_1 = (y_O + y_B)/2 => y_1 = (0 + 6)/2 = 3`

You need to find the midpoint AC such that:

`x_2 = (x_A + x_C)/2 => x_2 = (8 + 0)/2 = 4`

`y_2 = (y_A + y_C)/2 => y_2 = (0 + 3)/2 = 3/2`

You need to find the midpoint DE such that:

`x_3 = (x_D + x_E)/2 => x_3 = (-3 + 0)/2 = -3/2`

`y_3 = (y_D + y_E)/2 => y_3 = (0 + 48/5)/2 = 24/5`

You need to check if the midpoints are collinear evaluating the following determinant, such that:

`[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)] = [(3/2,3,1),(4,3/2,1),(-3/2,24/5,1)]` `= 9/4 + 96/5 - 9/2 + 9/4 - 72/10 - 12 = 96/5 - 72/10 - 12 = (192 - 72 - 120)/10 = (192 - 192)/10 = 0` Hence, since evaluating the determinant of the midpoints yields 0, hence, the midpoints are collinear. 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team