A car is traveling at 50 mi/h when the brakes are fully applied, producing a constant deceleration of 38 ft/s2...

A car is traveling at 50 mi/h when the brakes are fully applied, producing a constant deceleration of 38 ft/s2. What is the distance covered before the car comes to a stop? (Round your answer to one decimal place.)

_____________ft.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the unit to be consistent, convert 38 ft/s^2 to mi/h^2. Use the conversion factor,

1 mile = 5280 feet and 1 hour = 3600 seconds.

So,

`38 `  `(ft)/s^2`  `xx`  `(1 mi)/(5280ft)`  `xx` `( 3600s)^2/(1h)^2` `=` `93272.27` `(mi)/h^2`

Then, use the formula of constant acceleration to determine the distance travelled (s) by the car before it came to stop. The formula is:

`v_2^2=v_1^2 + 2as`

In the problem, the initial velocity of car is 50mi/h `(v_1=50)` . When the car comes to stop its final velocity then is zero `(v_2=0)`. And since the given is deceleration, not acceleration, then the value of a is negative. So `a = -93272.27` .

Substituting these values to the formula yields:

`0^2=50^2+2(-93272.27)s`

`0=2500-186544.54s`

Then, isolate the s.

`185644.54s= 2500`

`s = 2500/(185644.54)`

`s=0.0134`

Hence, the car travelled a distance of 0.0134 miles before it came to stop.

If we are going to express the distance travelled in feet, use the conversion factor 1 mile =5280 ft.

So

`0.0134 mi ` `xx` `(5280 ft)/(1 mi)` `=` `70.8 ft`

In feet, the car travelled a distance of 70.8 ft before it came to stop.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial