In genetics, what is the difference between a genotype and phenotype? How can you use Punnett squares to calculate genotype distribution amongst offspring of parents given their respective phenotypes?

This image has been Flagged as inappropriate Click to unflag
Image (1 of 2)
This image has been Flagged as inappropriate Click to unflag
Image (2 of 2)
Expert Answers
mathsworkmusic eNotes educator| Certified Educator

In genetics, a genotype is a single piece of information about a person's genetic makeup which is measurable by looking at the trait that is expressed. A phenotype on the other hand is the complete genetic information, made up of that which dominates what is expressed (dominant genes) and that which is dominated by other gene types when it comes to gene expression in a person's traits (recessive genes).

In humans, the DNA code found in all the cells in our body is made up of 23 pairs of chromosomes. One half of the pairs came from our mother and the other half from our father, where they each 'donate' at random from the pool of DNA material that they have. The material they donate however may not be copied exactly as changes can occur in transmission. The chromosomes contain alleles, which are essentially made up of groupings of the 'lego bricks' of the chromosome strands. These 'lego bricks' (base pairs) are simply chemicals. The paired information about an allele from the chromosome pairs is a gene. So a gene is made up of two halves called alleles. The genes are encoded information about traits we display in our physical appearance and personality. An individual chromosome could have some sections (alleles) that dominate over its twin chromosome's version of those alleles, but other sections that are dominated by its twin's version. The relation the two alleles have to each other determines the way the genetic information is expressed (genotype). The precise combination of alleles present in the gene is the phenotype.

The best way to see what all this means is to look at examples.

The example in the first sheet here is about expressed blood types.  The possible blood (geno)types given are A, B, O and AB. The possible alleles for each chromosome (which when put with the same allele on that chromosome's twin gives the phenotype) are A, B, and O. These alleles are chemical compounds of the type seen in DNA molecules, but are given letters because the chemical compounds are complex. We are told A and B are co-dominant (meaning 'jointly dominant' - neither dominates over the other) and that both A and B dominate over O, which is then said to be recessive.

The question suggests using Punnett squares to work out all the possible combinations of allele pairs (that determine genes) the children of the described parents could have. A Punnett square combines the possible alleles the parents can pass on to their potential children. Each parent has two alleles so that there are four possible combinations (phenotypes) for potential offspring. The dominance relationship in the pairs of alleles (genes) in the offspring determines genotype. The question asks for percentages amongst potential offspring of the possible different (geno)types A, B, O and AB.

In the first table for example, we're told both the mother and father are blood type O. This is the simplest case as to be blood type O your pair of alleles relating to the trait of blood type must be OO (if A or B are present at all, the type would be something else, because O is recessive to everything - it's like A and B can shout very loud, but O has a quiet voice that can only be heard when type O's chat with each other). You write the table like this

                            father's alleles                              Possible genotypes of the offspring:

                    ___|___O___|___O____                  The only possibility for their children

mother's    _O_|__OO__|___OO___                   is to have the same blood type as

alleles        _O_|__OO__|___OO___                  both their parents. Therefore the offspring

                                                                                    will be 100% type O, ie type O every time.

Table 3 is probably the most complicated case here as the father is blood type A heterozygous (meaning his pair of alleles is AO - 'hetero' meaning 'different' and 'homo' meaning 'the same') and the mother is blood type B heterozygous so that her pair of alleles is BO. Writing the table in the same way as above we get

                                   father's alleles                        Possible genotypes of offspring:

                  _____|___A___|___O____                1/4 (25%) of the outcomes are type AB

mother's  __B__|___BA__|___BO___                1/4 (25%) of the outcomes are type A

alleles     __O__|__ OA__|___OO___               1/4 (25%) of the outcomes are type B

                                                                                    1/4 (25%) of the outcomes are type O

atyourservice | Student

A genotype is the genetic make up of a person while a phenotype is the dominant allele that is visible physically. Like saying someone is recessive for a red hair that is their phenotype, seeing a person has red hair is a phenotype.

Genotype = genes                        Phenotype= physical

A punnet square can help tell the percentage because it shows you the likelihood of someone getting the disease visually for example:

Lets say we are looking for the probably of a disease the mom's genotype is Hh  and the dad's is hh and the disease is recessive (you need 2 hh to have the disease)

We set up a punnet square:

      H         h

h   Hh        hh  

h   Hh        hh

from the punnet square we can see that out of the whole thing (100%) there is a half half division. If you need an hh to get the disease then with the genotype of the parents there is a 50% chance of getting the disease.