Can somebody please help me with this math problem with intergrals? I really don´t know how to solve this and I´ve been sitting with this for days now.  I´ve tried to solve it with partly intergration where I choose the first part to be f(x) and the other part to be g´(x) and tried to use the product rule to solve them, but it´s becoming even more complex as I go by... I would be so happy if I can get some help or tips on how to solve this.

This image has been Flagged as inappropriate Click to unflag
Image (1 of 1)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The integral `int (1/sqrt 2)V_0*e^(-kt)*sqrt(1+e^(-kt)) dt` has to be determined.

Let `1+e^(-kt) = y`

`dy/dt = -k*e^(-kt)`

=> `e^(-kt) dt = (-1/k)dy`

`int (1/sqrt 2)V_0*e^(-kt)*sqrt(1+e^(-kt)) dt`

=> `int (1/sqrt 2)V_0*(-1/k)sqrt(y) dy`

=> `-V_0/(sqrt 2*k)int sqrt(y) dy`

=> `-V_0/(sqrt 2*k)y^(3/2)/(3/2)`

=> `(-2*V_0)/(3*sqrt 2*k)y^(3/2)`

Substitute `y = 1+e^(-kt)`

=> `(-2*V_0)/(3*sqrt 2*k)(1+e^(-kt))^(3/2)`

The required integral `int (1/sqrt 2)V_0*e^(-kt)*sqrt(1+e^(-kt)) dt = (-2*V_0)/(3*sqrt 2*k)(1+e^(-kt))^(3/2)`

Approved by eNotes Editorial Team