Consider a curve given by y = f(x).

The derivative of the function at any point x = a is given by

f'(a) = `lim_(h->0)(f(a+h) - f(a))/h`

Differentiation is also equivalent to taking two points corresponding to f(a) and f(a+h) and drawing a line between them. [f(a+h)-f(a)]/h is equal to the slope of the line between f(a) and f(a +h) and is the slope of the tangent at x = a as h tends to 0.

For any function, f'(a) either exists if the function is continuous or it does not exist where there are points of discontinuities.

A parabola is a continuous function, with the derivative existing at all points and having a unique value.

**Therefore a parabola cannot have more than tangent at any point.**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now