Find f. f''(x) = 6 + 6x + (24x^2) , f(0) = 5, f(1) = 14

Expert Answers

An illustration of the letter 'A' in a speech bubbles

  You need to use the inverse of differentiation, hence you need to integrate the given function twice to find the original function f(x).

`int f''(x) dx = f'(x) + c`

`int (6 + 6x + 24x^2)dx = int 6dx + int 6x dx + int 24x^2 dx`

`int (6 + 6x + 24x^2)dx = 6x + 6x^2/2 + 24x^3/3 + c`

`int (6 + 6x + 24x^2)dx = 6x + 3x^2 + 8x^3 + c`

(The entire section contains 172 words.)

Unlock This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial
Approved by eNotes Editorial Team