# f''(x) = (28x^3) − (15x^2) + 8xFind f. (Use C for the constant of the first antiderivative and D for the constant of the second antiderivative.) f''(x) = (28x^3) − (15x^2) + 8x

*print*Print*list*Cite

### 1 Answer

`f''(x)=28x^3-15x^2+8x`

`f'(x)=int(28x^3-15x^2+8x)dx=(28x^4)/4-(15x^3)/3+(8x^2)/2+C=>`

`f'(x)=7x^4-5x^3+4x^2+C`

`f(x)=int(7x^4-5x^3+4x^2+C)dx=(7x^5)/5-(5x^4)/4+(4x^3)/3+Cx+D=>`

`f(x)=(7x^5)/5-(5x^4)/4+(4x^3)/3+Cx+D`