(sinx)^2+sin2x=0

We know that sin2x= 2sinx*cosx

==> (sinx)^2+2sinx*cosx=0

==> sinx(sinx+2cosx)=0

Then sinx=0 or sinx+2cosx=0

First sinx=0

==> x= n*pi , (n=0,1,2,...)

For the other part:

sinx+2xosx=0

==> sinx=-2cosx

==> sinx/cosx= -2

==> tanx=-2

==> x= (n+1)pi-arctan 2

Theb x values are: {n*pi, (n+1)*pi-arctan 2}

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.