To do this you need to specify the temperature. Since you have not specified I will assume it as room temperature which is 25 C.
Then you have to write down the equation for dissolving of Ag2CO3 in pure water. This is a reversible reaction.
the equation is,
Ag2CO3 (solid) <--------------> 2 Ag+ (aq) + CO3 (2-) (aq)
1 mole 2 moles 1 mole
aq - Aqueous
After this we have to find the solubility constant, in other words you have to find the equlibrium constant of this reaction.
Ksp = [Ag+]^2 x [CO3(2-)] = 8.46 x 10^(-12) ------- (1)
I have found this in internet, you can see the link below.
Now if you look at the above euqation, the Concentration of Ag+ is twice as that of Carbonate ions,
Therefore,
[Ag+]^2 = 2 x [CO3(2-)]
By substituting this in Equation (1), you get
8.46 x 10 ^(-12) = (2 x [CO3(2-)])^2 x [CO3(2-)]
8.46 x 10^(-12) = 4 x [CO3(2-)]^3
[CO3(2-)]^3 = 2.115 x 10^(-12)
[CO3(2-)] = 1.2836 x 10^(-04) mol per dm3
or
[CO3(2-)] = 1.2836 x 10^(-04) mol per litre
That means, in one liter of saturated solution of Ag2CO3, you have 1.2836 x 10^(-04) mol. To get this amount, from simple stochiometry, you need the exact same number of moles of Ag2CO3.
Therefore the mols of Ag2CO3 needed = 1.2836 x 10^(-04) mol
The Molecular weight of Ag2CO3,
Molecular weight of Ag 107.86, C - 12 and O - 16 respectively.
The Molecular weight of Ag2CO3 = 2*107.86 + 12 + 3*16
= 275.72
Therefore the mass needed is = 275.72 * 1.2836 x 10^(-04)
= 0.03539 g.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.