Calculate the integral int^4_ (0) (4*x -x^2)dx using Riemann Sum and a regular partition with in subintervals

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

Since the problem does not specify what is the order of regular partition and what points are considered (leftpoints or rightpoints), the problem will be solved considering a regular partition of order 4 and left endpoints.

You need to evaluate the length of each subinterval such that:

`Delta x = (4 - 0)/4 = 1`

You need to evaluate the left endpoints such that:

`x_0 = 0`

`x_1 = 0+1 = 1`

`x_2 = 1+1 = 2`

`x_3 = 2+1 = 3`

You need to evaluate the area under the curve `f(x) = 4x -x^2, x`  axis and the endpoints `x=0`  and `x=4`  using the 4 rectangles, such that:

`A_4 = f(x_0)*Delta x+ f(x_1)*Delta x + f(x_2)*Delta x + f(x_3)*Delta x`

`A_4 = f(0)*1 + f(1)*1 + f(2)*1 + f(3)*1`

`A_4 = (4*0 -0^2) + (4*1 -1^2) + (4*2 -2^2) + (4*3 -3^2)`

`A_4 = 3 + 4 + 3 = 10`

Hence, evaluating the definite integral using a regular partition of order 4 and left endpoints yields `int_0^4 (4x -x^2)dx~~ 10.`

We’ve answered 318,917 questions. We can answer yours, too.

Ask a question