Math Questions and Answers

Start Your Free Trial

Calculate the integral int^4_ (0) (4*x -x^2)dx using Riemann Sum and a regular partition with in subintervals

Expert Answers info

Luca B. eNotes educator | Certified Educator

calendarEducator since 2011

write5,348 answers

starTop subjects are Math, Science, and Business

Since the problem does not specify what is the order of regular partition and what points are considered (leftpoints or rightpoints), the problem will be solved considering a regular partition of order 4 and left endpoints.

You need to evaluate the length of each subinterval such that:

`Delta x = (4 - 0)/4 = 1`

You need to evaluate the left endpoints such that:

`x_0 = 0`

`x_1 = 0+1 = 1`

`x_2 = 1+1 = 2`

`x_3 = 2+1 = 3`

You need to evaluate the area under the curve `f(x) = 4x -x^2, x`  axis and the endpoints `x=0`  and `x=4`  using the 4 rectangles, such that:

`A_4 = f(x_0)*Delta x+ f(x_1)*Delta x + f(x_2)*Delta x + f(x_3)*Delta x`

`A_4 = f(0)*1 + f(1)*1 + f(2)*1 + f(3)*1`

`A_4 = (4*0 -0^2) + (4*1 -1^2) + (4*2 -2^2) + (4*3 -3^2)`

`A_4 = 3 + 4 + 3 = 10`

Hence, evaluating the definite integral using a regular partition of order 4 and left endpoints yields `int_0^4 (4x -x^2)dx~~ 10.`

check Approved by eNotes Editorial