You should solve the indefinite integral using substitution, hence, you should come up with the following substitution such that:
`1 + tan x= u => (dx)/(cos^2 x) = du`
`int (dx)/((cos^2 x)sqrt(1 + tan x)) = int (du)/(sqrt(u)) `
`int (dx)/(cos^2 x)sqrt(1 + tan x) = int u^(-1/2) du`
`int u^(-1/2) du = (u^(-1/2+1))/(-1/2+1) + c`
`int u^(-1/2) du = 2u^(1/2) + c => int u^(-1/2) du = 2sqrt u + c`
Substituting back `1 + tan x` for u yields:
`int (dx)/((cos^2 x)sqrt(1 + tan x)) = 2sqrt(1 + tan x) + c`
Hence, evaluating the given integral using substitution yields `int (dx)/((cos^2 x)sqrt(1 + tan x)) = 2sqrt(1 + tan x) + c` .
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now