Calculate the indefinite integrals ∫dx/cos^2x(√1+tanx)

2 Answers | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You should solve the indefinite integral using substitution, hence, you should come up with the following substitution such that:

`1 + tan x= u => (dx)/(cos^2 x) = du`

`int (dx)/((cos^2 x)sqrt(1 + tan x)) = int (du)/(sqrt(u)) `

`int (dx)/(cos^2 x)sqrt(1 + tan x) = int u^(-1/2) du`

`int u^(-1/2) du = (u^(-1/2+1))/(-1/2+1) + c`

`int u^(-1/2) du = 2u^(1/2) + c => int u^(-1/2) du = 2sqrt u + c`

Substituting back `1 + tan x`  for u yields:

`int (dx)/((cos^2 x)sqrt(1 + tan x)) = 2sqrt(1 + tan x) + c`

Hence, evaluating the given integral using substitution yields `int (dx)/((cos^2 x)sqrt(1 + tan x)) = 2sqrt(1 + tan x) + c` .

quantatanu's profile pic

quantatanu | Student, Undergraduate | (Level 1) Valedictorian

Posted on

Let us take,

 

 t = tan(x)

=> dt = Sec^2(x) dx

Given integral is:

I = ∫dx/[cos^2x(√1+tanx)]

  = ∫ [Sec^2(x)/√(1+tanx)  dx]

  = ∫ [dt/√(1+t) ]

again let us take, 

z = 1 + t

dz = dt

therefore,

 I = ∫ [dt/√(1+t)]

   = ∫ [dz/√z]

   = 2 √z + Constant

   = 2 √(1+t) + Constant

   = 2 √(1+tan(x)) + Constant

We’ve answered 318,957 questions. We can answer yours, too.

Ask a question