Calculate gravitational force if string with r 1.25m is swung over head in horizontal circle 10 rotations with different masses 50g-10.37s 70g-9.69s

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The gravitational force acting between two objects is dependent on the mass of the objects and the distance by which they are separated.

For two objects with mass `m_1` and `m_2` and separated by a distance r, the gravitational force of attraction is equal to `F = (G*m_1*m_2)/r^2` where G is a constant equal to 6.67384*10^-11 m^3/(kg*s^2). On the Earth, the gravitational force of attraction on an object due to the Earth is equal to m*9.8 where m is the mass of the object.

In the problem, a string with radius 1.25 m holds a mass at one end and it is being rotated in the horizontal plane. This does not alter the gravitational force of attraction acting on the mass.

For an object with mass 50 g, the gravitational force of attraction is 50*10^-3*9.8 = 0.490 N and the gravitational force of attraction for the object with mass 70 g is 0.686 N

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team