Calculate the energy in kJ that is released as heat (70%) by exactly 1 gallon of gasoline.2 C8H18 (l) + 25 O2 (g) → 16 CO2 (g) + 18 H2O (g) H = –10110 kJ a. Calculate the energy in kJ that is...

Calculate the energy in kJ that is released as heat (70%) by exactly 1 gallon of gasoline.

2 C8H18 (l) + 25 O2 (g) → 16 CO2 (g) + 18 H2O (g) H = –10110 kJ

a. Calculate the energy in kJ that is released as heat (70%) by exactly 1 gallon of gasoline. The density of octane is 0.702 g/mL. Assume gasoline is pure octane (1 gallon = 3.7854 L). Show your work including any necessary formulas, all conversions, and all units.

b. Most of the heat calculated in part a goes right out the exhaust system and into the air. About 25% of the heat gets absorbed into the metal parts that make up your engine. Assume the mass of your engine is 79.8 lbs with a uniform specific heat of near 0.43 J/g x °C. If your engine begins at 25 °C, how hot will your engine be if it continuously burns 5.5 gallons of gasoline (octane) while driving? (1 lb = 0.4536 kg) To solve:

c. Let's say that the temperature at which your engine parts begin to melt is 3500 °C. Can your engine handle the temperature you calculated in part b.? Explain your answer.