Math Questions and Answers

Start Your Free Trial

Calculate the derivative of the function f(x)=(sin x + cos x)/(2sin x - 3 cosx).

Expert Answers info

Luca B. eNotes educator | Certified Educator

calendarEducator since 2011

write5,348 answers

starTop subjects are Math, Science, and Business

You need to use the quotient rule to find the derivative of `f(x)=(sin x + cos x)/(2sin x - 3 cosx).`

Differentiating with respect to x yields:

`f'(x) = ((sin x + cos x)'*(2sin x - 3 cosx) - (sin x + cos x)*(2sin x - 3 cosx)')/(2sin x -...

(The entire section contains 155 words.)

Unlock This Answer Now


check Approved by eNotes Editorial


jkj1362 | Student

istetz,

in the chain rule, the derivative of the function f(x)/g(x) is

{f'(x)*g(x) - f(x)*g'(x)}/[{g(x)}^2]

So, if we derive f(x) = (sinx + cosx)/(2sinx + 3cosx),

f'(x) =

{(cosx-sinx)*(2sinx-3cosx)-(sinx+cosx)*(2cosx+3sinx)}/{(2sinx - 3sinx)^2}

= -3(cosx)^2 - 2(sinx)^2 - 3(sinx)^2 -2(cosx)^2

Since (sinx)^2 + (cosx)^2 = 1,

the value of the equation above is

-3 -2 = -5

Hence, the derivative of f(x) is -5