Calc.

Find the derivative of the function.

int(t sint dt, t=1-2x...1+2x)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use inetgration by parts formula to find the integral of function such that:

`int udv = uv - int vdu`

`u = t =gt du = dt`

`dv = sin t dt =gt v = -cos t`

`int_(1-2x)^(1+2x) t sint dt = -t cos t|_(1-2x)^(1+2x) + int_(1-2x)^(1+2x) cos t dt`

`int_(1-2x)^(1+2x) t sint dt = ((1-2x)cos(1-2x) + (1+2x)cos(1+2x)) + sin(1+2x) - sin(1-2x)`

You need to open the brackets such that:

`int_(1-2x)^(1+2x) t sint dt = cos(1-2x) - 2xcos(1-2x) + cos(1+2x) + 2xcos(1+2x) + sin(1+2x) - sin(1-2x)`

You need to differentiate the function `F(x) = cos(1-2x) - 2xcos(1-2x) + cos(1+2x) + 2xcos(1+2x) + sin(1+2x) - sin(1-2x)`  with respect to x such that:

`F'(x) = 2sin(1-2x) - (2cos(1-2x) + 4xsin(1-2x)) - 2sin(1+2x) + 2cos(1+2x) - 4xsin(1+2x) + 2cos(1+2x) + 2cos(1-2x)`

Reducing like terms yields:

`F'(x) = 2sin(1-2x) - 4xsin(1-2x) -2sin(1+2x) + 4cos(1+2x) - 4xsin(1+2x) `

`F'(x) = 2(sin(1-2x) - sin(1+2x)) - 4x(sin(1-2x) + sin(1+2x)) + 4cos(1+2x) `

Hence, differentiating the given integral yields `(d/(dx))int_(1-2x)^(1+2x) t sint dt =2(sin(1-2x) - sin(1+2x)) - 4x(sin(1-2x) + sin(1+2x)) + 4cos(1+2x).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial