# Calc. Find the derivative of the function. int(t sint dt, t=1-2x...1+2x)

You need to use inetgration by parts formula to find the integral of function such that:

int udv = uv - int vdu

u = t =gt du = dt

dv = sin t dt =gt v = -cos t

int_(1-2x)^(1+2x) t sint dt = -t cos t|_(1-2x)^(1+2x) + int_(1-2x)^(1+2x)...

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

You need to use inetgration by parts formula to find the integral of function such that:

int udv = uv - int vdu

u = t =gt du = dt

dv = sin t dt =gt v = -cos t

int_(1-2x)^(1+2x) t sint dt = -t cos t|_(1-2x)^(1+2x) + int_(1-2x)^(1+2x) cos t dt

int_(1-2x)^(1+2x) t sint dt = ((1-2x)cos(1-2x) + (1+2x)cos(1+2x)) + sin(1+2x) - sin(1-2x)

You need to open the brackets such that:

int_(1-2x)^(1+2x) t sint dt = cos(1-2x) - 2xcos(1-2x) + cos(1+2x) + 2xcos(1+2x) + sin(1+2x) - sin(1-2x)

You need to differentiate the function F(x) = cos(1-2x) - 2xcos(1-2x) + cos(1+2x) + 2xcos(1+2x) + sin(1+2x) - sin(1-2x)  with respect to x such that:

F'(x) = 2sin(1-2x) - (2cos(1-2x) + 4xsin(1-2x)) - 2sin(1+2x) + 2cos(1+2x) - 4xsin(1+2x) + 2cos(1+2x) + 2cos(1-2x)

Reducing like terms yields:

F'(x) = 2sin(1-2x) - 4xsin(1-2x) -2sin(1+2x) + 4cos(1+2x) - 4xsin(1+2x) 

F'(x) = 2(sin(1-2x) - sin(1+2x)) - 4x(sin(1-2x) + sin(1+2x)) + 4cos(1+2x) 

Hence, differentiating the given integral yields (d/(dx))int_(1-2x)^(1+2x) t sint dt =2(sin(1-2x) - sin(1+2x)) - 4x(sin(1-2x) + sin(1+2x)) + 4cos(1+2x).`

Approved by eNotes Editorial Team