If f(x) = ex − 3, 0 ≤ x ≤ 2,find the Riemann sum with n = 4 correct to six decimal places, taking the sample points to be midpoints. If f(x) = ex − 3, 0 ≤ x ≤ 2,find the Riemann sum with n = 4 correct to six decimal places, taking the sample points to be midpoints. M4=____________

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find the interval width `Delta x`  using the following formula such that:

`Delta x = (b-a)/n`

`Delta x = (2-0)/4 =gt Delta x = 2/4 =gt Delta x = 1/2`  = 0.5

You need to evaluate the midpoints of intervals [0,0.5] , [0.5,1] , [1,1.5] , [1.5, 2] such that:

`x_1 = (0+0.5)/2 = 0.25`

`x_2 = (0.5+1)/2 = 0.75`

`x_3 = (1+1.5)/2 = 1.25`

`x_4 = (1.5+2)/2 = 1.75`

You need to use the formula of Riemann's sum such that:

`R_4 =`  `sum_(i=1)^4``f(x_i)*Delta x`

`R_4 = (1/2)*(f(x_1) + f(x_2) + f(x_3) + f(x_4))`

`R_4 = (1/2)*(f(0.25) + f(0.75) + f(1.25) + f(1.75))`

`R_4 = (1/2)*(e^0.25 - 3 + e^0.75 - 3 + e^1.25 - 3 + e^1.75 - 3)` `R_4 = (1/2)*(2.2795 + 2.1063 + 3.4610 + 5.6870 - 12)` =>`R_4 = 0.7669`

Hence, evaluating the Riemann's sum under given conditions yields `R_4 = 0.7669.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team