How much wire should be used for the square in order to minimize the total area? A piece of wire 28 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (b) How much wire should be used for the square in order to minimize the total area? _____________m

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should come up with the following notations: x expresses the length of side of square and y expresses the length of side of equilateral triangle.

You need to evaluate the perimeters of square and equilateral triangle such that:

`P square = 4x`

P triangle = `3y`

The problem provides the information that the total length of piece of wire is of 28 m such that:

`28 = 4x + 3y =gt y = (28-4x)/3:`

You need to evaluate the total area of square and triangle such that:

`A = A square + ` A triangle

`A = x^2 + y^2*sqrt3/4`

You need to write the function of area in terms of one variable, hence you may substitute `(28-4x)/3`  for y in equation of total area such that:

`A(x) = x^2 + (28-4x)^2*sqrt3/36`

`A(x) = x^2 + 16(7-x)^2*sqrt3/36`

`A(x) = x^2 + 4(7-x)^2*sqrt3/9`

You need to differentiate the function A(x) with respect to x  and then you need to solve the equation A'(x)=0 to find how much wire needs to be used for square to minimize the total area.

`A'(x) = 2x- 8sqrt3/9*(7-x)`

You need to solve the equation A'(x)=0  such that:

`2x - 8sqrt3/9*(7-x)= 0`

`2x- 56sqrt3/9 + 8sqrt3/9*x = 0`

`x(2 + 8sqrt3/9) = 56sqrt3/9 =gt x = (56sqrt3/9)/((18+8sqrt3)/9)`

`x = 56sqrt3/(18+8sqrt3) =gt x = 96.994/31.856`

`x = 3.044 m`

`P square = 4*3.044 =gt P square = 12.176 m`

Hence, evaluating the length of wire to be used for square to minimize the total area yields 12.176 meters.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team