Calc. Find the limit using L'Hospital's Rule. lim x--->0 (x)/(tan^-1 (4x))
- print Print
- list Cite
Expert Answers
Luca B.
| Certified Educator
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to use l'Hospital's theorem if the limit proves to be indeterminate, hence you should check if it is the case such that:
`lim_(x-gt0) x/(tan^(-1)4x) = 0/(tan^(-1) 0) = 0/0`
Since the limit is indeterminate, you may use l'Hospital's theorem such that:
`lim_(x-gt0) x/(tan^(-1)4x) = lim_(x-gt0) (x')/((tan^(-1)4x)')`
`lim_(x-gt0) (x')/((tan^(-1)4x)') = lim_(x-gt0) 1/(((4x)')/(1+16x^2))`
`lim_(x-gt0) 1/(((4x)')/(1+16x^2))= lim_(x-gt0)(1+16x^2)/4`
`lim_(x-gt0)(1+16x^2)/4 = (1+0)/4 = 1/4`
Hence, evaluating the limit to the given function yields `lim_(x-gt0) x/(tan^(-1)4x) =1/4.`
Related Questions
- lim x--> 0 (cotx - 1/x )Find the limit using L'Hospital's Rule where appropriate. If...
- 1 Educator Answer
- Find limits: 1.) lim x-->2 (8-x^3)/(x^2-5x+6) 2.) lim x-->-1 (x^2-5x+6)/(x^2-3x+2) 3.) lim...
- 2 Educator Answers
- `lim_(x ->0) (sqrt(1 + 2x) - sqrt(1 - 4x))/x` Find the limit. Use l’Hospital’s Rule where...
- 1 Educator Answer
- `lim_(x->1^+) [ln(x^7 - 1) - ln(x^5 - 1)]` Find the limit. Use l’Hospital’s Rule where...
- 1 Educator Answer
- lim(x->0)((1-e^2x)/(1-e^x))
- 1 Educator Answer