Calc. Find the limit using L'Hospital's Rule. lim x--->0 (x)/(tan^-1 (4x))

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use l'Hospital's theorem if the limit proves to be indeterminate, hence you should check if it is the case such that:

`lim_(x-gt0) x/(tan^(-1)4x) = 0/(tan^(-1) 0) = 0/0`

Since the limit is indeterminate, you may use l'Hospital's theorem such that:

`lim_(x-gt0) x/(tan^(-1)4x) = lim_(x-gt0) (x')/((tan^(-1)4x)')`

`lim_(x-gt0) (x')/((tan^(-1)4x)')...

See
This Answer Now

Start your subscription to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your Subscription

You need to use l'Hospital's theorem if the limit proves to be indeterminate, hence you should check if it is the case such that:

`lim_(x-gt0) x/(tan^(-1)4x) = 0/(tan^(-1) 0) = 0/0`

Since the limit is indeterminate, you may use l'Hospital's theorem such that:

`lim_(x-gt0) x/(tan^(-1)4x) = lim_(x-gt0) (x')/((tan^(-1)4x)')`

`lim_(x-gt0) (x')/((tan^(-1)4x)') = lim_(x-gt0) 1/(((4x)')/(1+16x^2))`

`lim_(x-gt0) 1/(((4x)')/(1+16x^2))= lim_(x-gt0)(1+16x^2)/4`

`lim_(x-gt0)(1+16x^2)/4 = (1+0)/4 = 1/4`

Hence, evaluating the limit to the given function yields `lim_(x-gt0) x/(tan^(-1)4x) =1/4.`

Approved by eNotes Editorial Team