Regarding the Bolzzano Principle, explain how, given function f with domain [0,1] and f(x)=6x^3+4x-9 has a value a in (0,1) so that f(a)=0, without solving the equations.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Bolzano's Theorem, more commonly known as the Intermediate Value Theorem, tells us that given two points on a continuous graph, where one point is above some horizontal line and one point is below the same horizontal line, there must be a point between the two given points that is on said line.

For your problem, since you are looking for f(a) = 0, the horizontal line of interest is the x-axis. Therefore, you need to show that in the given interval [0, 1], you have a point above the x-axis and a point below the x-axis. To do so, calculate f(0) and f(1). You should find that f(0) = -9 and f(1) = 1. Since one value is negative (so the point is below the x-axis) and one is positive (above the x-axis), there must be some value a in [0, 1] such that f(a) = 0. 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team