If a boat costs $40,000 find the number of years until the boat is worth $18,000.  [Round the answer to the nearest tenth of a year.] A new boat will decrease in value at a rate of 8% per year according to this formula V=C(1-r)^t  where V is the value of the boat after t years, C is the original cost, and r is the rate of depreciation. If a boat costs $40,000 find the number of years until the boat is worth $18,000.  [Round the answer to the nearest tenth of a year.]

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given the formula:

V = C(1-r)^t

v is the values

c is the original cost = 40,000

r is the rate = 8% = 0.08

t is the number of years

Given the information above, we need to find t such that v= 18,000

We will substitute the given information into the equation.

==> 18,000 = 40,000 *( 1- 0.08)^t

==> 18,000 = 40,000*(0.92)^2

We will divide by 40,000

==> (0,92)^t = 0.45

Now we will take the logarithm for both sides.

==> log (0.92)^t = log 0.45

==> t* log (0.92) = log 0.45

==> t= log 0.45 / log 0.92 = 9.6 years

Then, it takes 9.6 years for the boat to be worth $18,000.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team