Use newtons second law where a force downward is negative and upward is positive.
Newtons second law is:
`F_(n e t)=sum_i F_i=m a`
Which just says the sum of the net force is equal to the sum of the individual forces thats equal to the mass times the acceleration.
Now let `F_h` be the upward for due to the helicopter and `F_g` be due to gravity. Then we know:
`F_(n e t) =F_h-F_g=F_h-mg=ma`
Solve for a.
`(F_h-mg)/m=a`
Plug in the values and let the acceration for gravity g be 10 m/s/s.
`(25,000 N-2,000 kg *10 m/s^2)/(2,000 kg)=a`
`(25,000 N-2,000 kg *10 m/s^2)/(2,000 kg)=a`
`(25,000 N-20,000 N)/(2000 kg)=a`
`(5,000 N)/(2,000 kg)=a`
`5/3 (m/s^2) =a`
Therefore the acceleration of the helicopter is 5/3 meters per second per second upwards.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.
Further Reading