The original amount deposited is $6000. The rate of interest is 11%. Now we need to determine how long it takes for the money to triple.

Here we use the formula for compounding of interest as every year interest is also earned on the previous year's interest.

Therefore if the...

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The original amount deposited is $6000. The rate of interest is 11%. Now we need to determine how long it takes for the money to triple.

Here we use the formula for compounding of interest as every year interest is also earned on the previous year's interest.

Therefore if the time taken is n years

6000*(1+ .11)^n = 6000*3

cancel 6000 which is common on both the sides.

=> 1.11^n = 3

We can use logarithms here

=> n = log 3 / log 1.11

=>10.5271 years.

**Therefore $6000 becomes triple or $18000 in 10.5271 years if the rate of interest is 11% every year.**