The time period of a pendulum is closely approximated by the formula `T = 2*pi*sqrt(L/g)` where L is the length of the pendulum and g is the acceleration due to gravity.

On Earth, the frequency of the pendulum is 2 Hz. The time period is 1/2 = 0.5 seconds. `0.5 = 2*pi*sqrt(L/g_E)` . On planet X, the frequency of the same pendulum changes to 8 Hz. The time period of the pendulum is now 1/8 = 0.125 s. If the gravitational acceleration on planet X is `g_X` , `0.125 = 2*pi*sqrt(L/g_X)`

Divide the equations `0.5 = 2*pi*sqrt(L/g_E)` and `0.125 = 2*pi*sqrt(L/g_X)` . This gives: `4 = sqrt((L/g_E)/(L/g_X))`

=> `16 = g_X/g_E`

=> `g_X = 16*g_E`

The acceleration due to gravity on planet X is 16 times that of the gravitational attraction on Earth. The magnitude of the same is 156.8 m/s^2.

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now