If a and b are positive numbers, prove that the equation a/x^3 + 2x^2 - 1 + b/x^3 + x - 2 = 0 has at least one solution in the interval (-1,1)
- print Print
- list Cite
Expert Answers
briefcaseTeacher (K-12)
calendarEducator since 2011
write3,149 answers
starTop subjects are Math, Science, and Business
Given that a>0, b>0 show that `a/(x^3+2x^2-1)+b/(x^3+x-2)=0` for at least one point on (-1,1).
(1) First note that `x^3+2x^2-1=(x+1)(x^2+x-1)` and `x^3+x-2=(x-1)(x^2+x+2)` . The denominator for the fraction with `a` is zero at `x=(-1+sqrt(5))/2` . Let `c=(-1+sqrt(5))/2` . Then on (c,1) `a/(x^3+2x^2-1)>0` and `b/(x^3+x-2)<0` .
(2) As x approaches c from the right, the fraction with numerator a grows without bound. (`x^3+2x^2-1 -> 0` and both numerator and denominator are positive.)
(3) As x approaches c from the right, the...
(The entire section contains 296 words.)
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Related Questions
- x^3+2x^2-x-2=0 solve for x
- 1 Educator Answer
- `y = 3x^(2/3) - 2x, [-1,1]` Find the absolute extrema of the function on the closed interval.
- 2 Educator Answers
- Solve for X. e^2x - 3e^x + 2=0
- 1 Educator Answer
- `tan(2x) - 2cos(x) = 0` Find the exact solutions of the equation in the interval [0, 2pi).
- 1 Educator Answer
- `sin(2x) - sin(x) = 0` Find the exact solutions of the equation in the interval [0, 2pi).
- 1 Educator Answer