The mass of a body describes how much matter is contained in it. It has constant value that does not depend on where the body is and where the measurement of the mass is being made. Mass is expressed in the SI units kilogram (kg). Weight on the other hand...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The mass of a body describes how much matter is contained in it. It has constant value that does not depend on where the body is and where the measurement of the mass is being made. Mass is expressed in the SI units kilogram (kg). Weight on the other hand is a force by which an object is pulled towards another due to the gravitational force of attraction between them. The weight of a body is expressed in terms of newtons (N) which is the SI unit for force.

Astronauts in space are weightless; but the reason behind this is not that there is no force of attraction between the Earth and the astronaut. To illustrate the fact, the Moon orbits the Earth due to the gravitational acceleration caused due to the Earth and astronauts have not gone to distances greater than the distance of the Moon from the Earth.

The weightlessness of astronauts is due to the fact that they fall freely towards the Earth as they orbit it in their space craft. If a body is placed on a weighing scale that is falling freely towards the Earth, the scale measures a weight of the body equal to zero. A similar case applies to astronauts. Weightlessness can be experienced by anyone, though for a short duration of time, in many ways, for example in a roller coaster that is moving down at 9.8 m/s^2 or during a bungee jump.

**Further Reading**