Assume fringe supply curve is Q=-1+0.2P and demand is given by Q = 11 - P. Calculate the profit maximizing output and price of the dominant firm whose marginal cost is constant at $6?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The fringe supply is given by the curve Q = -1 + 0.2*P. The total demand is given by Q = 11 - P. The residual demand of the dominant firm is Q = 11 - P - (-1 + 0.2*P) = 12 - 1.2*P

In terms of Q, P = (12 - Q)/1.2

The revenue of the dominant firm is P*Q = 10Q - Q^2/1.2. The marginal revenue is the first derivative of the total revenue with respect to the demand and is given by 10 - 2Q/1.2

The marginal cost is $6. To maximize profit, the marginal cost should be equal to the marginal revenue. This gives 6 = 10 - 2*Q/1.2 or 2*Q/1.2 = 4 or Q = 2.4. For Q = 2.4, P = 8.

To maximize revenue the dominant firm should sell 2.4 products and the price of each should be $8.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team