The area of a rectangular field is equal to 300 square meters. Its perimeter is equal to 70 meters. Find the length and witdh of this rectangle

Expert Answers info

hala718 eNotes educator | Certified Educator

calendarEducator since 2008

write3,662 answers

starTop subjects are Math, Science, and Social Sciences

Let us assume that the width of the field is "W" and the length of the field is "L"

We are given that the area of the rectangular field is 300 m^2

But we know that the area = L*W

==> L*W = 300 ..................(1)

Also, we are given that the perimeter of the field is 70 m.

But we know that the perimeter = 2L+2W

==> 2L + 2W = 70

We will divide by 2.

==> L + W = 35......................(2)

Now we will use the substitution method to solve for L and W.

==> L = 35 - w

==> L*W = 300

==> (35-W)*W = 300

==> 35w - w^2 = 300

==> w^2 - 35w +300 = 0

Now we will factor.

==> (w - 15)(w-20) = 0

==> w = 15  == L = 20

==> w = 20 ==> L = 15

But we know that L > w

==> L = 20  and W = 15

Then, the length of the field = 20 meter, and the width of the field = 15 meter.

check Approved by eNotes Editorial
justaguide eNotes educator | Certified Educator

calendarEducator since 2010

write12,544 answers

starTop subjects are Math, Science, and Business

We have that the area of a rectangular field is equal to 300 square meters and its perimeter is equal to 70 meters.

Let the length and the width of the field be L and W

Perimeter = 2(W + L) = 70

=> W + L = 35

=> W = 35 - L

Area = W * L = 300

=> (35 - L)* L = 300

=> 35 L  - L^2 = 300

=> L^2 - 35 L + 300 = 0

=> L^2 - 15 L - 20 L + 300 = 0

=> L( L-15) - 20( L- 15) = 0

=> (L - 20) ( L -15) = 0

So L can be 20 and 15

W = 15 and 20

As length is greater than the width, we have the length equal to 20 and the width equal to 15.

check Approved by eNotes Editorial

neela | Student

Area A = l*w, where l is length and w = width of the rectangle.

So l*w = 300 m^2 (given).

Perimeter P = 2(l+w) is the formula.

=> 2(l+w) = 70 m.

Therefore l+w = 70/2 = 35 m.

Therefore lw = 300 and l+w = 35.

So l and w are the roots of x^2-(l+w)x+lw = 0

x^2-35x+300 = 0.

(x-20)(x-15) = 0.

x-20 = 0, or x-15 = 0.

So x1 = l = 20 and x2 = w = 15.

So length and breadth of the rectangular field are 20 m and 15 respectively.

check Approved by eNotes Editorial