arcsin 1/2 + arcsin x = pi/3. Find the x value !
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You should remember that `arcsin (a) = alpha` .
Calculating the sine function both sides yields:
`sin(arcsin 1/2 + arcsin x) = sin (pi/3)`
Use the trigonometric formula: `sin(alpha+beta) = sin alpha*cos beta + sin beta*cos alpha`
`sin(arcsin 1/2 + arcsin x) = sin (arcsin (1/2))*cos(arcsin x) + sin(arcsin x)*cos(arcsin (1/2))`
You need to remember that `sin (arcsin x) = x` and `cos(arcsin x) = sqrt(1 - x^2)`
`` `sin(arcsin 1/2 + arcsin x) = (1/2)*sqrt(1 - x^2) + x*sqrt(1 - 1/4)`
`` `sin(arcsin 1/2 + arcsin x) = (sqrt(1 - x^2))/2 + (xsqrt3)/2`
`` Write the equation:
`(sqrt(1 - x^2))/2 + (xsqrt3)/2 = sin (pi/3)`
`(sqrt(1 - x^2))/2 + (xsqrt3)/2 = sqrt3/2`
`` `sqrt(1 - x^2) + xsqrt3 = sqrt3`
`sqrt(1 - x^2) = sqrt3*(1-x)`
Raising to square both sides yields:
`1 - x^2 = 3(1-x)^2`
Expanding the binomial yields:
`1 - x^2 = 3 - 6x + 3x^2`
Bring all terms to the left side:
`1 - x^2- 3 +6x- 3x^2 = 0 =gt -4x^2 + 6x - 2 = 0`
Divide by -2:
`2x^2 - 3x + 1 = 0`
Using quadratic formula yields:
`x_(1,2) = (3+-sqrt(9 - 8))/4 =gt x_(1,2) = (3+-1)/4`
`x_1 = 1 ; x_2 = 1/2`
The solutions to the given equation are:`x_1 = 1 ; x_2 = 1/2` .
Related Questions
- Arctg(x) + Arcctg(1/3) = Pi/2. Find the x value.
- 2 Educator Answers
- Given f(x) = k(2+x), find the value of k if f^-1 (-2) = -3
- 1 Educator Answer
- `f(x) = (x^2 - 1)^3, [-1, 2]` Find the absolute maximum and minimum values of f on the...
- 1 Educator Answer
- sin[arcsin(1/5)+ arccos x] =1 find the value of x?
- 1 Educator Answer
- Find the value of `2sin^(2)pi/6 + cosec^(2) 7pi/6 cos^(2) pi/3?` ``
- 2 Educator Answers
Keep in mind that if arcsin x = y then sin y = x. To solve the problem first note that arcsin 1/2 = pi/6. Then subtract the pi/6 from both sides to get:
arcsin x = pi/3 - pi/6 = pi/6
And as we just saw arcsin 1/2 = pi/6 so x=1/2.
Student Answers