Applying the definiton of derivative, find f'(x) if f(x)=7/x b. Find f'(6)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The definition of the derivative of a function is `lim_(Delta x ->0)(f(x+Delta x)-f(x))/(Delta x)` ;assuming the limit exists.

Thus if `f(x)=7/x` then :

`f'(x)=lim_(Delta x -> 0)(7/(x+Delta x)-7/x)/(Delta x)`

`=lim_(Delta x -> 0)((7x-7x-7Delta x)/(x(x+Delta x)))/(Delta x)`

`=lim_(Delta x -> 0)((-7 Delta x)/(x(x+Delta x)))/(Delta x)`

`=lim_(Delta x -> 0)(-7)/(x(x+Delta x))`


Thus `f'(x)=-7/x^2`

Then `f'(6)=-7/(6^2)=-7/36`


An alternative to find the derivative at a point c for a function differentiable at c is:


Here c=6 and f(6)=7/6 so:





`=-7/36` as above.

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial