# If A is any matrix , to what is tr(AA^t) equal? Where tr denotes the trace of a matrix.Which is the sum of the entries on its main diagonal. If you could put it in step by step form how you get the answer it would be much appreciated.

If `A` is any m x n matrix which we write as

`A`  = (a11  a12  a13  ... a1n)

a21  a22  a23  ... a2n

a31  a32  a33  ... a3n

.

.

(am1 am2 am3 ... amn)

then

`tr(A A^T) = Sigma_(j=1)^nSigma_(i=1)^m a_(ij)^2 `

ie...

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

If `A` is any m x n matrix which we write as

`A`  = (a11  a12  a13  ... a1n)

a21  a22  a23  ... a2n

a31  a32  a33  ... a3n

.

.

(am1 am2 am3 ... amn)

then

`tr(A A^T) = Sigma_(j=1)^nSigma_(i=1)^m a_(ij)^2 `

ie the sum of all the squared elements of `A`

For example, if `A` is a 4 x 3 matrix

`A A^T`  = (a11 a12 a13)  .  (a11  a21  a31  a41)

a21 a22 a23       a12  a22  a32  a42

a31 a32 a33      (a13  a23  a33  a43)

(a41 a42 a43)

= (a11^2 + a12^2 + a13^2     .                         .                       .              )

.               a21^2 + a22^2 + a23^2      .                       .

.                            .         a31^2 + a32^2 + a33^3       .

(         .                            .                         .      a41^2 + a42^2 + a43^2)

The entries marked '.' are not important for this calculation.

For general m and n, ` `the sum of all the diagonal entries of `A A^T`where `A`is any m x n matrix is given by` `` `

`tr(A A^T) = Sigma_(j=1)^nSigma_(i=1)^m a_(ij)^2`   answer

Approved by eNotes Editorial Team